This course is made of two different modules, namely, [netsci] and [dataviz], whose objectives are described below. [netsci]: This course introduces the fundamental concepts, principles and methods in the interdisciplinary field of network science, with a particular focus on analysis techniques, modeling, and applications for the World Wide Web and online social media. Topics covered include graphic structures of networks, mathematical models of networks, common networks topologies, structure of large scale graphs, community structures, epidemic spreading, PageRank and other centrality measures, dynamic processes in networks, graphs visualization. [dataviz]: Another learning objective of this class falls in the field of scientific data visualization. Students will learn basic visualization design and evaluation principles, and learn how to acquire, parse, and analyze large datasets. Students will also learn techniques for visualizing multivariate, temporal, text-based, geospatial, hierarchical, and (above all) network/graph-based data. Additionally, students will utilize GePhi, D3, Python, and many other tools to prototype many of these techniques on existing datasets. Full version of the course includes both modules. This is of interest for students of INF0007 "Analisi e Visualizzazione delle Reti Complesse" (Master's degree in "Computer Science", 9 credits). Other students may have to consider only the [netsci] module. In particular this applies to students attending MAT0049 "Complex networks" (Master's degree in "Stocastics and Data Science", 6 credits), and MFN0954 "Reti Complesse" (Master's degree in "Computer Science", 6 credits).